OpenGL ES2 0编程三步曲
发布日期:2021-09-29 04:02:26 浏览次数:11 分类:技术文章

本文共 13665 字,大约阅读时间需要 45 分钟。

分享一下我老师大神的人工智能教程!零基础,通俗易懂!

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

               

1. 保存全局变量的数据结构

以下例子程序均基于Linux平台。

typedef struct _escontext{
   void*       userData;                    // Put your user data here...   GLint       width;                          // Window width   GLint       height;                         // Window height   EGLNativeWindowType  hWnd;  // Window handle   EGLDisplay  eglDisplay;             // EGL display   EGLContext  eglContext;            // EGL context   EGLSurface  eglSurface;            // EGL surface   // Callbacks   void (ESCALLBACK *drawFunc) ( struct _escontext * );   void (ESCALLBACK *keyFunc) ( struct _escontext *, unsigned char, int, int );   void (ESCALLBACK *updateFunc) ( struct _escontext *, float deltaTime );}ESContext;
typedef struct{
   // Handle to a program object   GLuint programObject;   // Atrribute Location   GLint positionLoc;   GLint textureLoc;   // Uniform location   GLint matrixModeLoc;   GLint matrixViewLoc;   GLint matrixPerspectiveLoc;   // Sampler location   GLint samplerLoc;   // texture   GLuint texture;} UserData;

2. 初始化EGL渲染环境和相关元素(第一步曲)

int InitEGL(ESContext * esContext){     NativeWindowType eglWindow = NULL;     EGLDisplay display;     EGLContext context;     EGLSurface surface;     EGLConfig configs[2];     EGLBoolean eRetStatus;     EGLint majorVer, minorVer;     EGLint context_attribs[] = {EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE};     EGLint numConfigs;     EGLint cfg_attribs[] = {EGL_BUFFER_SIZE,    EGL_DONT_CARE,                             EGL_DEPTH_SIZE,     16,                             EGL_RED_SIZE,       5,                             EGL_GREEN_SIZE,     6,                             EGL_BLUE_SIZE,      5,                             EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,                             EGL_NONE};     // Get default display connection      display = eglGetDisplay((EGLNativeDisplayType)EGL_DEFAULT_DISPLAY);     if ( display == EGL_NO_DISPLAY )     {          return EGL_FALSE;     }     // Initialize EGL display connection     eRetStatus = eglInitialize(display, &majorVer, &minorVer);     if( eRetStatus != EGL_TRUE )     {          return EGL_FALSE;     }     //Get a list of all EGL frame buffer configurations for a display     eRetStatus = eglGetConfigs (display, configs, 2, &numConfigs);     if( eRetStatus != EGL_TRUE )     {          return EGL_FALSE;     }     // Get a list of EGL frame buffer configurations that match specified attributes     eRetStatus = eglChooseConfig (display, cfg_attribs, configs, 2, &numConfigs);     if( eRetStatus != EGL_TRUE  || !numConfigs)     {          return EGL_FALSE;     }     // Create a new EGL window surface     surface = eglCreateWindowSurface(display, configs[0], eglWindow, NULL);     if (surface == EGL_NO_SURFACE)     {          return EGL_FALSE;     }     // Set the current rendering API (EGL_OPENGL_API, EGL_OPENGL_ES_API,EGL_OPENVG_API)     eRetStatus = eglBindAPI(EGL_OPENGL_ES_API);     if (eRetStatus != EGL_TRUE)     {          return EGL_FALSE;     }     // Create a new EGL rendering context     context = eglCreateContext (display, configs[0], EGL_NO_CONTEXT, context_attribs);     if (context == EGL_NO_CONTEXT)     {          return EGL_FALSE;     }     // Attach an EGL rendering context to EGL surfaces     eRetStatus = eglMakeCurrent (display, surface, surface, context);     if( eRetStatus != EGL_TRUE )     {          return EGL_FALSE;     }     //If interval is set to a value of 0, buffer swaps are not synchronized to a video frame, and the swap happens as soon as the render is complete.     eglSwapInterval(display,0);     // Return the context elements     esContext->eglDisplay = display;     esContext->eglSurface = surface;     esContext->eglContext = context;     return EGL_TRUE;}

3. 生成Program (第二步曲)

3.1 LoadShader

LoadShader主要实现以下功能:

       1) 创建Shader对象

       2) 装载Shader源码

       3) 编译Shader

      其实现参考代码如下:

 

/* type specifies the Shader type: GL_VERTEX_SHADER or GL_FRAGMENT_SHADER */GLuint LoadShader ( GLenum type, const char *shaderSrc ){   GLuint shader;   GLint compiled;      // Create an empty shader object, which maintain the source code strings that define a shader   shader = glCreateShader ( type );   if ( shader == 0 )    return 0;   // Replaces the source code in a shader object   glShaderSource ( shader, 1, &shaderSrc, NULL );      // Compile the shader object   glCompileShader ( shader );   // Check the shader object compile status   glGetShaderiv ( shader, GL_COMPILE_STATUS, &compiled );   if ( !compiled )    {      GLint infoLen = 0;      glGetShaderiv ( shader, GL_INFO_LOG_LENGTH, &infoLen );            if ( infoLen > 1 )      {         char* infoLog = malloc (sizeof(char) * infoLen );         glGetShaderInfoLog ( shader, infoLen, NULL, infoLog );         esLogMessage ( "Error compiling shader:\n%s\n", infoLog );                              free ( infoLog );      }      glDeleteShader ( shader );      return 0;   }   return shader;}

1)glCreateShader

       它创建一个空的shader对象,它用于维护用来定义shader的源码字符串。支持以下两种shader:
      (1) GL_VERTEX_SHADER: 它运行在可编程的“顶点处理器”上,用于代替固定功能的顶点处理;
      ( 2) GL_FRAGMENT_SHADER: 它运行在可编程的“片断处理器”上,用于代替固定功能的片段处理;

2)glShaderSource

        shader对象中原来的源码全部被新的源码所代替。

3)glCompileShader

       编译存储在shader对象中的源码字符串,编译结果被当作shader对象状态的一部分被保存起来,可通过glGetShaderiv函数获取编译状态。

4)glGetShaderiv

       获取shader对象参数,参数包括:GL_SHADER_TYPE, GL_DELETE_STATUS, GL_COMPILE_STATUS, GL_INFO_LOG_LENGTH, GL_SHADER_SOURCE_LENGTH.

3.2 LoadProgram

其参考代码如下:

 

GLuint LoadProgram ( const char *vShaderStr, const char *fShaderStr ){   GLuint vertexShader;   GLuint fragmentShader;   GLuint programObject;   GLint linked;   // Load the vertex/fragment shaders   vertexShader = LoadShader ( GL_VERTEX_SHADER, vShaderStr );   fragmentShader = LoadShader ( GL_FRAGMENT_SHADER, fShaderStr );   // Create the program object   programObject = glCreateProgram ( );   if ( programObject == 0 )      return 0;   // Attaches a shader object to a program object   glAttachShader ( programObject, vertexShader );   glAttachShader ( programObject, fragmentShader );   // Bind vPosition to attribute 0      glBindAttribLocation ( programObject, 0, "vPosition" );   // Link the program object   glLinkProgram ( programObject );   // Check the link status   glGetProgramiv ( programObject, GL_LINK_STATUS, &linked );   if ( !linked )    {      GLint infoLen = 0;      glGetProgramiv ( programObject, GL_INFO_LOG_LENGTH, &infoLen );            if ( infoLen > 1 )      {         char* infoLog = malloc (sizeof(char) * infoLen );         glGetProgramInfoLog ( programObject, infoLen, NULL, infoLog );         esLogMessage ( "Error linking program:\n%s\n", infoLog );                              free ( infoLog );      }      glDeleteProgram ( programObject );      return GL_FALSE;   }    // Free no longer needed shader resources   glDeleteShader ( vertexShader );   glDeleteShader ( fragmentShader );   return programObject;}

 

1)glCreateProgram

      建立一个空的program对象,shader对象可以被连接到program对像
2)glAttachShader
      program对象提供了把需要做的事连接在一起的机制。在一个program中,在shader对象被连接在一起之前,必须先把shader连接到program上。
3)glBindAttribLocation
       把program的顶点属性索引与顶点shader中的变量名进行绑定。
4)glLinkProgram
       连接程序对象。如果任何类型为GL_VERTEX_SHADER的shader对象连接到program,它将产生在“可编程顶点处理器”上可执行的程序;如果任何类型为GL_FRAGMENT_SHADER的shader对象连接到program,它将产生在“可编程片断处理器”上可执行的程序。
5)glGetProgramiv
       获取program对象的参数值,参数有:GL_DELETE_STATUS, GL_LINK_STATUS, GL_VALIDATE_STATUS, GL_INFO_LOG_LENGTH, GL_ATTACHED_SHADERS, GL_ACTIVE_ATTRIBUTES, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, GL_ACTIVE_UNIFORMS, GL_ACTIVE_UNIFORM_MAX_LENGTH.

3.3 CreateProgram

       在3.1中只实现了Shader的编译,在3.2中只实现了Program的链接,现在还缺少真正供进行编译和链接的源码,其参考代码如下:

 

int CreateProgram(ESContext * esContext){     GLuint programObject;     GLbyte vShaderStr[] =        "attribute vec4 vPosition;    \n"      "void main()                  \n"      "{                            \n"      "   gl_Position = vPosition;  \n"      "}                            \n";        GLbyte fShaderStr[] =        "precision mediump float;\n"\      "void main()                                  \n"      "{                                            \n"      "  gl_FragColor = vec4 ( 1.0, 0.0, 0.0, 1.0 );\n"      "}                                                    \n";        // Create user data     esContext->userData = malloc(sizeof(UserData));    UserData *userData = esContext->userData;    // Load the shaders and get a linked program object    programObject = LoadProgram ( (const char*)vShaderStr, (const char*)fShaderStr );    if(programObject == 0)    { return GL_FALSE;    }    // Store the program object    userData->programObject = programObject;    // Get the attribute locations    userData->positionLoc = glGetAttribLocation ( g_programObject, "v_position" );    glClearColor ( 0.0f, 0.0f, 0.0f, 1.0f );    return 0;}

4. 安装并执行Program(第三步) 

void Render ( ESContext *esContext ){   UserData *userData = esContext->userData;   GLfloat vVertices[] = {  0.0f,  0.5f, 0.0f,                            -0.5f, -0.5f, 0.0f,                            0.5f, -0.5f, 0.0f };         // Set the viewport   glViewport ( 0, 0, esContext->width, esContext->height );      // Clear the color buffer   glClear ( GL_COLOR_BUFFER_BIT );   // Use the program object   glUseProgram ( userData->programObject );   // Load the vertex data   glVertexAttribPointer ( 0, 3, GL_FLOAT, GL_FALSE, 0, vVertices );   glEnableVertexAttribArray ( 0 );   glDrawArrays ( GL_TRIANGLES, 0, 3 );   eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface);
}

4.1 glClear

      清除指定的buffer到预设值。可清除以下四类buffer:

      1)GL_COLOR_BUFFER_BIT

      2)GL_DEPTH_BUFFER_BIT

      3)GL_ACCUM_BUFFER_BIT

      4)GL_STENCIL_BUFFER_BIT

      预设值通过glClearColor, glClearIndex, glClearDepth, glClearStencil, 和glClearAccum来设置。

1)gClearColor

       指定color buffer的清除值,当调用glClear(GL_COLOR_BUFFER_BIT)时才真正用设定的颜色值清除color buffer。参数值的范围为:0~1。

      void glClearColor( GLclampf   red, GLclampf   green,  GLclampf   blue,  GLclampf   alpha);

2)glClearIndex

       指定color index buffer清除值。void glClearIndex( GLfloat   c);

3)glClearDepth

       指定depth buffer的清除值,取值范围为:0~1,默认值为1。

       void glClearDepth( GLclampd   depth);

4)glClearStencil

       指定stencil buffer清除值的索引,初始值为0。void glClearStencil( GLint   s);

5)glClearAccum

       指定accumulation buffer的清除值,初始值为0,取值范围为:-1~1

       void glClearAccum( GLfloat red,GLfloat green,GLfloat blue,GLfloat alpha);

4.2 glUseProgram

       安装一个program object,并把它作为当前rendering state的一部分。

       1) 当一个可执行程序被安装到vertex processor,下列OpenGL固定功能将被disable:

  • The modelview matrix is not applied to vertex coordinates.
  • The projection matrix is not applied to vertex coordinates.
  • The texture matrices are not applied to texture coordinates.
  • Normals are not transformed to eye coordinates.
  • Normals are not rescaled or normalized.
  • Normalization of GL_AUTO_NORMAL evaluated normals is not performed.
  • Texture coordinates are not generated automatically.
  • Per-vertex lighting is not performed.
  • Color material computations are not performed.
  • Color index lighting is not performed.
  • This list also applies when setting the current raster position.

    2) 当一个可执行程序被安装到fragment processor,下列OpenGL固定功能将被disable:

  • Texture environment and texture functions are not applied.
  • Texture application is not applied.
  • Color sum is not applied.
  • Fog is not applied.

4.3 glVertexAttribPointer

       定义一个通用顶点属性数组。当渲染时,它指定了通用顶点属性数组从索引index处开始的位置数据格式。其定义如下:

 

   void glVertexAttribPointer(         GLuint   index,           // 指示将被修改的通用顶点属性的索引          GLint   size,             // 指点每个顶点元素个数(1~4)         GLenum   type,            // 数组中每个元素的数据类型          GLboolean   normalized,   //指示定点数据值是否被归一化(归一化<[-1,1]或[0,1]>:GL_TRUE,直接使用:GL_FALSE)         GLsizei   stride,         // 连续顶点属性间的偏移量,如果为0,相邻顶点属性间紧紧相邻          const GLvoid *   pointer);//顶点数组//注:其index应该小于#define GL_MAX_VERTEX_ATTRIBS               0x8869

4.4 glEnableVertexAttribArray

      Enable由索引index指定的通用顶点属性数组。

      void glEnableVertexAttribArray( GLuint   index);

      void glDisableVertexAttribArray( GLuint   index);

      默认状态下,所有客户端的能力被disabled,包括所有通用顶点属性数组。如果被Enable,通用顶点属性数组中的值将被访问并被用于rendering,通过调用顶点数组命令:glDrawArrays, glDrawElements, glDrawRangeElements, glArrayElement, glMultiDrawElements, or glMultiDrawArrays.

4.5 glDrawArrays

    void glDrawArrays( GLenum   mode, 

                                  GLint   first, 
                                  GLsizei   count);

    1) mode:指明render原语,如:GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, 和 GL_POLYGON。

    2) first: 指明Enable数组中起始索引。

    3) count: 指明被render的原语个数。

    可以预先使用单独的数据定义vertex、normal和color,然后通过一个简单的glDrawArrays构造一系列原语。当调用glDrawArrays时,它使用每个enable的数组中的count个连续的元素,来构造一系列几何原语,从第first个元素开始。

4.6 eglSwapBuffers

      把EGL surface中的color buffer提交到native window进行显示。 

      EGLBoolean eglSwapBuffers(EGLDisplay display,EGLSurface surface)

5. 协调组织

    在前面的描述中,三步曲已经完成了:

    1)初始化EGL环境,为绘图做好准备

    2)生成Program

    3)安装并执行Program

    只有这三个关键人物,还不能运行,还需要一个协调组织者。其参考代码如下:   

int main(int argc, char** argv){    ESContext esContext;    UserData  userData;    int iFrames;     unsigned long iStartTime,iEndTime;    int iDeltaTime;    memset( &esContext, 0, sizeof( ESContext) );    esContext.userData = &userData;    esContext.width = 1280;    esContext.height = 720;    // Init EGL display, surface and context    if(!InitEGL(&esContext))    {        printf("Init EGL fail\n");        return GL_FALSE;    }    // compile shader, link program     if(!CreateProgram(&esContext))    {        printf("Create Program fail\n");        return GL_FALSE;    }    iStartTime = GetCurTime();    iFrames = 0;    while(1)    {    // render a frame         Render(&esContext);         iFrames++;                 iEndTime = GetCurTime(); iDeltaTime  = iEndTime - iStartTime; if(iDeltaTime >= 5000) {           iStartTime = iEndTime;  float fFrame = iFrames * 1000.0 / iDeltaTime;  iFrames = 0;  printf("Frame: %f\n", fFrame); }    }    glDeleteProgram (esContext.userData->programObject);    return GL_TRUE;}

 

           

给我老师的人工智能教程打call!

这里写图片描述

转载地址:https://blog.csdn.net/hddghhfd/article/details/84062327 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:H 265/HEVC Codec 编解码 MP4 和 TS
下一篇:Linux USB驱动工作流程

发表评论

最新留言

表示我来过!
[***.240.166.169]2024年04月03日 12时01分41秒

关于作者

    喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!

推荐文章

《学会花钱》书中精髓:花钱如何掌握分寸,以及如何避开花钱误区 2019-04-26
《定投十年财务自由》书中精髓:我们如何通过定投获得更高的收益? 2019-04-26
《海龟交易法则》精髓:制定对自己有利的交易规则,在风险可控的前提下,当机会出现,你要坚定不移的机械性执行交易 2019-04-26
《彼得·林奇教你理财》书中精髓:如何开始投资,以及我们到底该投资什么? 2019-04-26
《货币简史》书中的精髓:货币产生的起源是什么?货币又是如何发展起来的? 2019-04-26
《摩根财团》精髓:摩根财团与时俱进,在不同时代扮演不同角色,始终走在时代的前列 2019-04-26
《朝贡贸易与仗剑经商》精髓:古代中国朝廷不保护商人,将中国商人置于西方势力的仗剑经商之下 2019-04-26
《华尔街之狼》精髓:摔倒并不是坏事,就怕你因此放弃。 2019-04-26
《微观动机与宏观行为》精髓:个人的微观动机,是如何影响宏观行为结果的? 2019-04-26
《国富论》精髓:亚当·斯密提出的对后世影响深远的三个经济学理论:劳动分工理论、生产要素理论和宏观调控理论 2019-04-26
《动荡的世界》精髓:什么是动物精神?动物精神又是怎么影响2008年全球经济危机的,以及我们该如何预防动物精神,避免危机再次发生。 2019-04-26
《投资最重要的事》精髓:利用逆向思维,掌握既冷静又勇猛的投资方法,成为投资界真正厉害的人。 2019-04-26
《金融的本质》书中的精髓:金融危机是如何产生的?以及美联储是如何应对金融危机的? 2019-04-26
《周期》书中的精髓:如何利用周期,掌握世界的发展趋势,实现财富积累。 2019-04-26
《伟大的博弈》书中的精髓:华尔街是如何从一条小街,一步步发展为世界金融中心的。 2019-04-26
《逃不开的经济周期》书中的精髓:经济周期是推动创新变革和经济增长以及复兴的关键力量。 2019-04-26
《朋友还是对手》书中的精髓:奥地利学派和芝加哥学派两派共识远多于分歧,两派首先是朋友,其次才是对手。 2019-04-26
《动物精神》书中的精髓:人类的非理性面影响经济决策,这些有可能是金融危机的根源。 2019-04-26
《赢家的诅咒》书中的精髓:人性的复杂让主流经济学出现了诸多失灵,如何用更多理论完善经济学大厦是经济学家的重要使命 2019-04-26
《巴菲特法则》书中的精髓:用好巴菲特企业前景投资法则,股票投资稳赚不赔。 2019-04-26