最长公共上升子序列(LIS)
发布日期:2022-02-02 02:58:12 浏览次数:4 分类:技术文章

本文共 2652 字,大约阅读时间需要 8 分钟。

最长公共上升子序列(LIS)的O(n^2)算法

预备知识:动态规划的基本思想,LCS,LIS。


问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列)。

首先我们可以看到,这个问题具有相当多的重叠子问题。于是我们想到用DP搞。DP的首要任务是什么?定义状态。
1定义状态F[i][j]表示以a串的前i个字符b串的前j个字符且以b[j]为结尾构成的LCIS的长度。


为什么是这个而不是其他的状态定义?最重要的原因是我只会这个,还有一个原因是我知道这个定义能搞到平方的算法。而我这只会这个的原因是,这个状态定义实在是太好用了。这一点我后面再说。


我们来考察一下这个状态。思考这个状态能转移到哪些状态似乎有些棘手,如果把思路逆转一下,考察这个状态的最优值依赖于哪些状态,就容易许多了。这个状态依赖于哪些状态呢?


首先,在a[i]!=b[j]的时候有F[i][j]=F[i-1][j]。为什么呢?因为F[i][j]是以b[j]为结尾的LCIS,如果F[i][j]>0那么就说明a[1]..a[i]中必然有一个字符a[k]等于b[j](如果F[i][j]等于0呢?那赋值与否都没有什么影响了)。因为a[k]!=a[i],那么a[i]对F[i][j]没有贡献,于是我们不考虑它照样能得出F[i][j]的最优值。所以在a[i]!=b[j]的情况下必然有F[i][j]=F[i-1][j]。这一点参考LCS的处理方法。

那如果a[i]==b[j]呢?首先,这个等于起码保证了长度为1的LCIS。然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的F数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。并且也不能是i-2,因为i-1必然比i-2更优。第二维呢?那就需要枚举b[1]..b[j-1]了,因为你不知道这里面哪个最长且哪个小于b[j]。这里还有一个问题,可不可能不配对呢?也就是在a[i]==b[j]的情况下,需不需要考虑F[i][j]=F[i-1][j]的决策呢?答案是不需要。因为如果b[j]不和a[i]配对,那就是和之前的a[1]..a[j-1]配对(假设F[i-1][j]>0,等于0不考虑),这样必然没有和a[i]配对优越。(为什么必然呢?因为b[j]和a[i]配对之后的转移是max(F[i-1][k])+1,而和之前的i`配对则是max(F[i`-1][k])+1。显然有F[i][j]>F[i`][j],i`>i) 于是我们得出了状态转移方程:
a[i]!=b[j]:   F[i][j]=F[i-1][j]
a[i]==b[j]:   F[i][j]=max(F[i-1][k])+1 1<=k<=j-1&&b[j]>b[k]
不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。
但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(F[i-1][k])的值我们可以在之前访问F[i][k]的时候通过维护更新一个max变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了F[1][len(b)]再去算F[2][1]。 如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个max变量为0,然后开始内层循环。当a[i]>b[j]的时候令max=F[i-1][j]。如果循环到了a[i]==b[j]的时候,则令F[i][j]=max+1。
最后答案是F[len(a)][1]..F[len(a)][len(b)]的最大值。 参考代码:



 


 
 

#include<cstdio>

 #include<cstring>

int f[1005[1005],a[1005],b[1005],i,j,t,n1,n2,max;

 int main()


         scanf("%d",&t);

         while(t--)

        {  

            scanf("%d%d",&n1,&n2);  

            for(i=1;i<=n1;i++) scanf("%d",&a[i]); 

               for(i=1;i<=n2;i++) scanf("%d",&b[i]);

              memset(f,0,sizeof(f));  

             for(i=1;i<=n1;i++) 

            {   

                   max=0;  

                   for(j=1;j<=n2;j++)

                   {   

                      f[i][j]=f[i-1][j];   

                  if (a[i]>b[j]&&max<f[i-1][j]) max=f[i-1][j];  

                 if (a[i]==b[j]) f[i][j]=max+1;

                  }

         } 

         max=0; 

          for(i=1;i<=n2;i++)

          if (max<f[n1][i]) max=f[n1][i];

       printf("%d\n",max);

      }

       return 0;

 }

其实还有一个很风骚的一维的算法。在此基础上压掉了一维空间(时间还是平方)。i循环到x的时候,F[i]表示原来F[x][j]。之所以可以这样,是因为如果a[i]!=b[j],因为F[x][j]=F[x-1][j]值不变,F[x]不用改变,沿用过去的就好了,和这个比较维护更新得到的max值依然是我们要的。而a[i]==b[j]的时候,就改变F[x]的值好了。具体结合代码理解。 参考代码:

 #include<cstdio>

 #include<cstring>

int f[1005],a[1005],b[1005],i,j,t,n1,n2,max;

 int main()

 {

 scanf("%d",&t); 

while(t--)

  { 

 scanf("%d%d",&n1,&n2);

  for(i=1;i<=n1;i++) scanf("%d",&a[i]);  

for(i=1;i<=n2;i++) scanf("%d",&b[i]);

  memset(f,0,sizeof(f));

for(i=1;i<=n1;i++)   {    max=0;    for(j=1;j<=n2;j++)    {     if (a[i]>b[j]&&max<f[j]) max=f[j];     if (a[i]==b[j]) f[j]=max+1;    }   }
  max=0;
  for(i=1;i<=n2;i++) if (max<f[i]) max=f[i];   printf("%d\n",max);
 }
}
最长公共上升子序列(LCIS)的平方算法@我们都爱刘汝佳
2011-2-18

转载地址:https://blog.csdn.net/u010368749/article/details/20449171 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:hdu1423---Greatest Common Increasing Subsequence(最长公共上升子序列)
下一篇:uva10465Homer Simposon(完全背包)

发表评论

最新留言

不错!
[***.249.68.14]2022年05月22日 15时31分19秒

关于作者

    喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!

最新文章