机器学习100天:专栏目录
发布日期:2021-07-01 04:21:38 浏览次数:7 分类:技术文章

本文共 522 字,大约阅读时间需要 1 分钟。


环境: Python3.6.5
编译器:
数据及代码: 暂时放在我公众号 【K同学啊】


第一天:

初步接触机器学习从数据的预处理开始,从导入第三方库到处理丢失数据、创建虚拟变量再到拆分数据、特征标准化。

第二天:

接触的第一个模型,线性回归模型挺适合新手入门的,通过线性会回归可以让我们很好的了解到机器学习究竟是个什么东西。

第三天:

多元线性回归是简单线性回归的升级版,在数学的角度上来看,就是从一元方程升级到多元方程。

第四天:

深入讨论了线性回归问题,理论联系实际,初步接触机器学习中的算法问题。

第五天:

机器学习中经典模型之一,按照之前线性回归的学习心得探索逻辑回归模型

第六天:

可视化是机器学习中一个比较重要的点,一个模型的好与不好通过数据可视化可以很直观的体现出来。

第七天:

回到之前逻辑回归的学习中,站在数学的角度上看待逻辑回归。

第八天:

工欲善其事,必先利其器。这里总结一下之前用的工具IPython与jupyter notebook。

第九天:

这里讲的K-邻近算法模型。

第十天:

这里记录了主要的分类与回归评价指标共8种,以及它们的代码实现。

第十一天:

这篇文章是通过经典的垃圾短信分类来介绍朴素贝叶斯模型。

转载地址:https://mtyjkh.blog.csdn.net/article/details/82793057 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:机器学习第4天:线性回归及梯度下降
下一篇:机器学习第3天:多元线性回归

发表评论

最新留言

做的很好,不错不错
[***.191.171.4]2022年08月19日 04时58分00秒

关于作者

    喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!

最新文章