机器学习的敲门砖:kNN算法(上)
发布日期:2021-06-29 19:26:02 浏览次数:2 分类:技术文章

本文共 8189 字,大约阅读时间需要 27 分钟。

机器学习的敲门砖:kNN算法(上)

本文为数据茶水间群友原创,经授权在本公众号发表。

关于作者:Japson。某人工智能公司AI平台研发工程师,专注于AI工程化及场景落地。持续学习中,期望与大家多多交流技术以及职业规划。

0x00 前言

天下苦数学久矣!

对于很多想要入门机器学习的工程师来说,数学是通往AI道路上的第一支拦路虎。一些已经工作的同学不得不捡起早已还给老师的数学知识,勉强拿起《统计学习方法》、《西瓜书》等入门书籍钻研。或被一个个复杂的机公式劝退,或记下一堆公式定理之后却不知道和代码有什么关系,茫然不知所措。

其实对于工程师来说,最直接的入门方法就是coding。

本系列从最简单的机器学习算法“K-近邻算法”开始,通过代码走进机器学习的大门,搞定传统机器学习算法。

首先会介绍算法的基本原理,然后依据原理手动实现算法,最后使用sklearn中提供的机器学习库完成一些小demo。不用担心,相关的机器学习概念以及算法原理也会穿插其中,帮助你以“代码->原理->代码”这种迭代的方式完成学习。

需要:

掌握Python语言,能够使用Numpy、Pandas等工具库。

不要求对机器学习算法以及相关概念有很深刻的了解,因为在文章中会对首次出现的概念进行介绍。

子曰:“先行其言而后从之”。行动永远是引发改变的第一步,话不多说,先让我们码起来吧!

0x01 初探kNN算法

为什么选择kNN

为什么说KNN算法是机器学习的敲门砖?

首先KNN算法思想简单朴素,容易理解,几乎不需要任何数学知识。这一点使得KNN算法非常适合入门。

其次,KNN算法也很好用,理论成熟,简单粗暴,既可以用来做分类(天然支持多分类),也可以用来做回归。并且与朴素贝叶斯之类的算法相比,由于其对数据没有假设,因此准确度高,对异常点不敏感。

最后,kNN算法简单,但是可以解释机器学习算法过程中的很多细节问题,能够完整的刻画机器学习应用的流程。

当然KNN算法也有缺点,我们会在最后进行总结。

kNN思想简介

鲁迅曾经说过:“想要了解一个人,就去看看他的朋友”。因此,KNN算法是鲁迅发明的。

kNN(k-NearestNeighbor),也就是k最近邻算法。顾名思义,所谓K最近邻,就是k个最近的邻居的意思。也就是在数据集中,认为每个样本可以用离他最距离近的k个邻居来代表。

贴出一张从百度百科上找的一张图,我们可以直观地感受到这朴素的思想:我们要判断Xu 是什么颜色的,找到与其距离最近的5个点,有4个是红色的,有1个是绿色的。因此我们认为Xu是属于红色的集合

640?wx_fmt=jpeg

因此我们说:

在一个给定的类别已知的训练样本集中,已知样本集中每一个数据与所属分类的对应关系(标签)。在输入不含有标签的新样本后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似的k个数据(最近邻)的分类标签。通过多数表决等方式进行预测。即选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

K近邻法不具有显式的学习过程,而是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。

kNN算法流程

通过理解算法思想,可以将其简化为“找邻居+投票”。K近邻法使用的模型,实际上是特征空间的划分。模型由三个基本要素决定:

  • 距离度量

  • k值

  • 分类决策规则

其中两个实例点之间的距离反映了相似程度。一般来说使用欧氏距离来计算。

梳理kNN算法流程如下:

  1. 计算测试对象到训练集中每个对象的距离

  2. 按照距离的远近排序

  3. 选取与当前测试对象最近的k的训练对象,作为该测试对象的邻居

  4. 统计这k个邻居的类别频率

  5. k个邻居里频率最高的类别,即为测试对象的类别

0x02 算法实现

kNN算法自实现

打开Jupyter Notebook,创建Python3文件。

准备数据

首先我们准备一组数据:

import numpy as npimport matplotlib.pyplot as plt# raw_data_x是特征,raw_data_y是标签,0为良性,1为恶性raw_data_X = [[3.393533211, 2.331273381],              [3.110073483, 1.781539638],              [1.343853454, 3.368312451],              [3.582294121, 4.679917921],              [2.280362211, 2.866990212],              [7.423436752, 4.685324231],              [5.745231231, 3.532131321],              [9.172112222, 2.511113104],              [7.927841231, 3.421455345],              [7.939831414, 0.791631213]             ]raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]# 设置训练组X_train = np.array(raw_data_X)y_train = np.array(raw_data_y)# 将数据可视化plt.scatter(X_train[y_train==0,0],X_train[y_train==0,1], color='g', label = 'Tumor Size')plt.scatter(X_train[y_train==1,0],X_train[y_train==1,1], color='r', label = 'Time')plt.xlabel('Tumor Size')plt.ylabel('Time')plt.axis([0,10,0,5])plt.show()

数据可视化后生成的图片如下图所示。其中横轴是肿块大小,纵轴是发现时间。每个病人的肿块大小和发病时间构成了二维平面特征中的一个点。对于每个点,我们通过label明确是恶性肿瘤(绿色)、良性肿瘤(红色)。

640?wx_fmt=jpeg

那么现在给出一个肿瘤患者的数据(样本点)x:[8.90933607318, 3.365731514],是良性肿瘤还是恶性肿瘤

求距离

我们要做的是:求点x到数据集中每个点的距离,首先计算距离,使用欧氏距离

640?wx_fmt=png

下面写代码:

from math import sqrtdistances = []  # 用来记录x到样本数据集中每个点的距离for x_train in X_train:    d = sqrt(np.sum((x_train - x) ** 2))    distances.append(d)# 使用列表生成器,一行就能搞定,对于X_train中的每一个元素x_train都进行前面的运算,把结果生成一个列表distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in X_train]distances输出:[5.611968000921151, 6.011747706769277, 7.565483059418645, 5.486753308891268, 6.647709180746875, 1.9872648870854204, 3.168477291709152, 0.8941051007010301, 0.9830754144862234, 2.7506238644678445]

在求出距离列表之后,我们要找到最小的距离,需要进行一次排序操作。其实不是简单的排序,因为我们把只将距离排大小是没有意义的,我们要知道距离最小的k个点是在样本集中的位置。

这里我们使用函数:np.argsort(array) 对一个数组进行排序,返回的是相应的排序后结果的索引

nearest = np.argsort(distances)nearest输出:array([7, 8, 5, 9, 6, 3, 0, 1, 4, 2])结果的含义是:距离最小的点在distances数组中的索引是7,第二小的点索引是8... 近到远是哪些点

选k值

然后我们选择k值,这里暂定为6,那就找出最近的6个点(top 6),并记录他们的标签值(y)

k = 6topK_y = [y_train[i] for i in nearest[:k]]topK_y输出:[1, 1, 1, 1, 1, 0]

决策规则

下面进入投票环节。找到与测试样本点最近的6个训练样本点的标签y是什么。可以查不同类别的点有多少个。

将数组中的元素和元素出现的频次进行统计

from collections import Countervotes = Counter(topK_y)votes输出:一个字典,原数组中值为0的个数为1,值为1的个数有为5Counter({0:1, 1:5})

# Counter.most_common(n) 找出票数最多的n个元素,返回的是一个列表,列表中的每个元素是一个元组,元组中第一个元素是对应的元素是谁,第二个元素是频次votes.most_common(1)输出:[(1,5)]predict_y = votes.most_common(1)[0][0]predict_y输出:1

得到预测的y值是1

自实现完整工程代码

我们已经在jupyter notebook中写好了kNN算法,下面我们在外部进行封装。

相关代码可以在 https://github.com/japsonzbz/ML_Algorithms 中看到

import numpy as npimport math as sqrtfrom collections import Counterclass kNNClassifier:    def __init__(self, k):        """初始化分类器"""        assert k >= 1, "k must be valid"        self.k = k        self._X_train = None        self._y_train = None    def fit(self, X_train, y_train):        """根据训练数据集X_train和y_train训练kNN分类器"""        assert X_train.shape[0] == y_train.shape[0], \            "the size of X_train must be equal to the size of y_train"        assert self.k <= X_train.shape[0], \            "the size of X_train must be at least k"        self._X_train = X_train        self._y_train = y_train        return self    def predict(self,X_predict):        """给定待预测数据集X_predict,返回表示X_predict结果的向量"""        assert self._X_train is not None and self._y_train is not None, \            "must fit before predict!"        assert X_predict.shape[1] == self._X_train.shape[1], \            "the feature number of X_predict must be equal to X_train"        y_predict = [self._predict(x) for x in X_predict]        return np.array(y_predict)    def _predict(self, x):        distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]        nearest = np.argsort(distances)        topK_y = [self._y_train[i] for i in nearest]        votes = Counter(topK_y)        return votes.most_common(1)[0][0]    def __repr__(self):        return "kNN(k=%d)" % self.k

当我们写完定义好自己的kNN代码之后,可以在jupyter notebook中使用魔法命令进行调用:

%run myAlgorithm/kNN.pyknn_clf = kNNClassifier(k=6)knn_clf.fit(X_train, y_train)X_predict = x.reshape(1,-1)y_predict = knn_clf.predict(X_predict)y_predict输出:array([1])

现在我们就完成了一个sklearn风格的kNN算法,但是实际上,sklearn封装的算法比我们实现的要复杂得多。

sklearn中的kNN

代码

对于机器学习来说,其流程是:训练数据集 -> 机器学习算法 -fit-> 模型 输入样例 -> 模型 -predict-> 输出结果

我们之前说过,kNN算法没有模型,模型其实就是训练数据集,predict的过程就是求k近邻的过程。

我们使用sklearn中已经封装好的kNN库。你可以看到使用有多么简单。

from sklearn.neighbors import KNeighborsClassifier# 创建kNN_classifier实例kNN_classifier = KNeighborsClassifier(n_neighbors=6)# kNN_classifier做一遍fit(拟合)的过程,没有返回值,模型就存储在kNN_classifier实例中kNN_classifier.fit(X_train, y_train)# kNN进行预测predict,需要传入一个矩阵,而不能是一个数组。reshape()成一个二维数组,第一个参数是1表示只有一个数据,第二个参数-1,numpy自动决定第二维度有多少y_predict = kNN_classifier.predict(x.reshape(1,-1))y_predict输出:array([1])

kNN_classifier.fit(X_train, y_train)这行代码后其实会有一个输出:

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',           metric_params=None, n_jobs=1, n_neighbors=6, p=2,           weights='uniform')

参数

classsklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=None, **kwargs)

我们研究一下参数:

  • n_neighbors: int, 可选参数(默认为 5)。用于kneighbors查询的默认邻居的数量

  • weights(权重): str or callable(自定义类型), 可选参数(默认为 ‘uniform’)。用于预测的权重参数,可选参数如下:

    • uniform : 统一的权重. 在每一个邻居区域里的点的权重都是一样的。

    • distance : 权重点等于他们距离的倒数。

      使用此函数,更近的邻居对于所预测的点的影响更大。

    • [callable] : 一个用户自定义的方法,此方法接收一个距离的数组,然后返回一个相同形状并且包含权重的数组。

  • algorithm(算法): {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, 可选参数(默认为 ‘auto’)。计算最近邻居用的算法:

    • ball_tree 使用算法BallTree

    • kd_tree 使用算法KDTree

    • brute 使用暴力搜索

    • auto 会基于传入fit方法的内容,选择最合适的算法。

      注意 : 如果传入fit方法的输入是稀疏的,将会重载参数设置,直接使用暴力搜索。

  • leaf_size(叶子数量): int, 可选参数(默认为 30)。传入BallTree或者KDTree算法的叶子数量。此参数会影响构建、查询BallTree或者KDTree的速度,以及存储BallTree或者KDTree所需要的内存大小。此可选参数根据是否是问题所需选择性使用。

  • p: integer, 可选参数(默认为 2)。用于Minkowski metric(闵可夫斯基空间)的超参数。p = 1, 相当于使用曼哈顿距离,p = 2, 相当于使用欧几里得距离],对于任何 p ,使用的是闵可夫斯基空间。

  • metric(矩阵): string or callable, 默认为 ‘minkowski’。用于树的距离矩阵。默认为闵可夫斯基空间,如果和p=2一块使用相当于使用标准欧几里得矩阵. 所有可用的矩阵列表请查询 DistanceMetric 的文档。

  • metric_params(矩阵参数): dict, 可选参数(默认为 None)。给矩阵方法使用的其他的关键词参数。

  • n_jobs: int, 可选参数(默认为 1)。用于搜索邻居的,可并行运行的任务数量。如果为-1, 任务数量设置为CPU核的数量。不会影响fit

方法

对于KNeighborsClassifier的方法:

方法名 含义
fit(X, y) 使用X作为训练数据,y作为目标值(类似于标签)来拟合模型。
get_params([deep]) 获取估值器的参数。
neighbors([X, n_neighbors, return_distance]) 查找一个或几个点的K个邻居。
kneighbors_graph([X, n_neighbors, mode]) 计算在X数组中每个点的k邻居的(权重)图。
predict(X) 给提供的数据预测对应的标签。
predict_proba(X) 返回测试数据X的概率估值。
score(X, y[, sample_weight]) 返回给定测试数据和标签的平均准确值。
set_params(**params) 设置估值器的参数。

0xFF 总结

在本文中我们了解了第一个ML算法kNN,kNN凭借着自己朴素成熟的特点成为机器学习的敲门砖。

然后我们学习了kNN算法的流程,并且在jupyter notebook上手动实现了代码,并且在外部也进行了封装。最后我们学习了sklearn中的kNN算法。

虽然我们自己实现了一个机器学习算法,但是它的效果怎样样?预测准确率高不高?我们在机器学习过程中还有哪些需要注意的问题呢?

且听下回分解。

转载地址:https://dafei1288.blog.csdn.net/article/details/100911378 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:机器学习的敲门砖:kNN算法(中)
下一篇:JimSQL

发表评论

最新留言

哈哈,博客排版真的漂亮呢~
[***.90.31.176]2024年04月29日 17时40分13秒