Java字节码研究
发布日期:2021-06-30 19:32:46 浏览次数:2 分类:技术文章

本文共 26223 字,大约阅读时间需要 87 分钟。

关于怎么查看字节码的五种方法参考本人另一篇文章《》

1.String和常连池

先上代码:

public class TestApp {    public static void main(String[] args) {                String s1 = "abc";        String s2 = new String("abc");        String s3 = new String("abc");        System.out.println(s2 == s1.intern());        System.out.println(s2 == s3.intern());        System.out.println(s1 == s3.intern());        System.out.println(s3 == s3.intern());        String s4 = "abcd";        String s5 = new String("abcde");        System.out.println(s4);        System.out.println(s5.intern());    }}

输出:

falsefalsetruefalseabcdabcde

第一个知识点--String.intern:

参考:

Returns a canonical representation for the string object. A pool of strings, initially empty, is maintained privately by the class String. When the intern method is invoked, if the pool already contains a string equal to this String object as determined by the equals(Object) method, then the string from the pool is returned. Otherwise, this String object is added to the pool and a reference to this String object is returned. It follows that for any two strings s and t, s.intern() == t.intern() is true if and only if s.equals(t) is true. All literal strings and string-valued constant expressions are interned. String literals are defined in section 3.10.5 of the The Java? Language Specification.

上面是jdk源码中对intern方法的详细解释。简单来说就是intern用来返回常量池中的某字符串,如果常量池中已经存在该字符串,则直接返回常量池中该对象的引用。否则,在常量池中加入该对象,然后返回引用。

生成class文件

Classfile /D:/TestApp.class  Last modified 2019-3-5; size 869 bytes  MD5 checksum 9093744ea00ada929804a84661bb3119  Compiled from "TestApp.java"public class TestApp  minor version: 0  major version: 52  flags: ACC_PUBLIC, ACC_SUPERConstant pool:   #1 = Methodref          #12.#25        // java/lang/Object."
":()V #2 = String #26 // abc #3 = Class #27 // java/lang/String #4 = Methodref #3.#28 // java/lang/String."
":(Ljava/lang/String;)V #5 = Fieldref #29.#30 // java/lang/System.out:Ljava/io/PrintStream; #6 = Methodref #3.#31 // java/lang/String.intern:()Ljava/lang/String; #7 = Methodref #32.#33 // java/io/PrintStream.println:(Z)V #8 = String #34 // abcd #9 = String #35 // abcde #10 = Methodref #32.#36 // java/io/PrintStream.println:(Ljava/lang/String;)V #11 = Class #37 // TestApp #12 = Class #38 // java/lang/Object #13 = Utf8
#14 = Utf8 ()V #15 = Utf8 Code #16 = Utf8 LineNumberTable #17 = Utf8 main #18 = Utf8 ([Ljava/lang/String;)V #19 = Utf8 StackMapTable #20 = Class #39 // "[Ljava/lang/String;" #21 = Class #27 // java/lang/String #22 = Class #40 // java/io/PrintStream #23 = Utf8 SourceFile #24 = Utf8 TestApp.java #25 = NameAndType #13:#14 // "
":()V #26 = Utf8 abc #27 = Utf8 java/lang/String #28 = NameAndType #13:#41 // "
":(Ljava/lang/String;)V #29 = Class #42 // java/lang/System #30 = NameAndType #43:#44 // out:Ljava/io/PrintStream; #31 = NameAndType #45:#46 // intern:()Ljava/lang/String; #32 = Class #40 // java/io/PrintStream #33 = NameAndType #47:#48 // println:(Z)V #34 = Utf8 abcd #35 = Utf8 abcde #36 = NameAndType #47:#41 // println:(Ljava/lang/String;)V #37 = Utf8 TestApp #38 = Utf8 java/lang/Object #39 = Utf8 [Ljava/lang/String; #40 = Utf8 java/io/PrintStream #41 = Utf8 (Ljava/lang/String;)V #42 = Utf8 java/lang/System #43 = Utf8 out #44 = Utf8 Ljava/io/PrintStream; #45 = Utf8 intern #46 = Utf8 ()Ljava/lang/String; #47 = Utf8 println #48 = Utf8 (Z)V{ public TestApp(); descriptor: ()V flags: ACC_PUBLIC Code: stack=1, locals=1, args_size=1 0: aload_0 1: invokespecial #1 // Method java/lang/Object."
":()V 4: return LineNumberTable: line 1: 0 public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=3, locals=6, args_size=1 0: ldc #2 // String abc ///加载常量池中的第2项("abc")到栈中 2: astore_1 ///将0:中的引用赋值给第1个局部变量,即s1 = "abc" 3: new #3 // class java/lang/String ///生成String实例 6: dup ///复制3:生成对象也就是s2的引用并压入栈中 7: ldc #2 // String abc ///加载常量池中的第2项("abc")到栈中 9: invokespecial #4 // Method java/lang/String."
":(Ljava/lang/String;)V ///调用常量池中的第4项,即java/lang/String."
"方法。 12: astore_2 ///将9:中的引用赋值给第2个局部变量,即s2 = new String("abc"); 13: new #3 // class java/lang/String ///生成String实例 16: dup ///复制13:生成对象的引用并压入栈中 17: ldc #2 // String abc ///加载常量池中的第2项("abc")到栈中 19: invokespecial #4 // Method java/lang/String."
":(Ljava/lang/String;)V ///调用常量池中的第4项,即java/lang/String."
"方法。 22: astore_3 ///将19:中的引用赋值给第3个局部变量,即s3 = new String("abc"); 23: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; ///获取指定类的静态域,并将其值压入栈顶 26: aload_2 ///把第2个本地变量也就是s2送到栈顶 27: aload_1 ///把第1个本地变量也就是s1送到栈顶 28: invokevirtual #6 // Method java/lang/String.intern:()Ljava/lang/String; ///对s1调用String.intern方法返回的是常连池对象的引用#2 31: if_acmpne 38 ///比较栈顶两引用型数值,当结果不相等时跳转 比较s2 == s1.intern() 6:和#2显然不等 34: iconst_1 ///int型常量值1进栈 也就是true 35: goto 39 ///跳转到39: 38: iconst_0 ///int型常量值0进栈 也就是false 39: invokevirtual #7 // Method java/io/PrintStream.println:(Z)V 42: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 45: aload_2 ///把第2个本地变量也就是s2送到栈顶 46: aload_3 ///把第3个本地变量也就是s3送到栈顶 47: invokevirtual #6 // Method java/lang/String.intern:()Ljava/lang/String; ///s3调用String.intern方法返回的是常连池对象的引用#2 50: if_acmpne 57 ///也就是比较s2 == s3.intern() 6:和#2显然不等 53: iconst_1 54: goto 58 57: iconst_0 58: invokevirtual #7 // Method java/io/PrintStream.println:(Z)V 61: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 64: aload_1 ///把第1个本地变量也就是s1送到栈顶 65: aload_3 ///把第3个本地变量也就是s3送到栈顶 66: invokevirtual #6 // Method java/lang/String.intern:()Ljava/lang/String; //对s3调用String.intern方法返回的是常连池对象的引用#2 69: if_acmpne 76 ///也就是比较s1 == s3.intern() #2和#2显然相等 72: iconst_1 73: goto 77 76: iconst_0 77: invokevirtual #7 // Method java/io/PrintStream.println:(Z)V 80: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 83: aload_3 84: aload_3 85: invokevirtual #6 // Method java/lang/String.intern:()Ljava/lang/String; 88: if_acmpne 95 ///也就是比较s3 == s3.intern() 13:和#2显然不等 91: iconst_1 92: goto 96 95: iconst_0 96: invokevirtual #7 // Method java/io/PrintStream.println:(Z)V 99: ldc #8 // String abcd 101: astore 4 103: new #3 // class java/lang/String 106: dup 107: ldc #9 // String abcde 109: invokespecial #4 // Method java/lang/String."
":(Ljava/lang/String;)V 112: astore 5 114: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 117: aload 4 119: invokevirtual #10 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 122: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 125: aload 5 127: invokevirtual #6 // Method java/lang/String.intern:()Ljava/lang/String; 130: invokevirtual #10 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 133: return LineNumberTable: line 5: 0 line 6: 3 line 7: 13 line 9: 23 line 10: 42 line 11: 61 line 12: 80 line 14: 99 line 15: 103 line 16: 114 line 17: 122 line 18: 133 StackMapTable: number_of_entries = 8 frame_type = 255 /* full_frame */ offset_delta = 38 locals = [ class "[Ljava/lang/String;", class java/lang/String, class java/lang/String, class java/lang/String ] stack = [ class java/io/PrintStream ] frame_type = 255 /* full_frame */ offset_delta = 0 locals = [ class "[Ljava/lang/String;", class java/lang/String, class java/lang/String, class java/lang/String ] stack = [ class java/io/PrintStream, int ] frame_type = 81 /* same_locals_1_stack_item */ stack = [ class java/io/PrintStream ] frame_type = 255 /* full_frame */ offset_delta = 0 locals = [ class "[Ljava/lang/String;", class java/lang/String, class java/lang/String, class java/lang/String ] stack = [ class java/io/PrintStream, int ] frame_type = 81 /* same_locals_1_stack_item */ stack = [ class java/io/PrintStream ] frame_type = 255 /* full_frame */ offset_delta = 0 locals = [ class "[Ljava/lang/String;", class java/lang/String, class java/lang/String, class java/lang/String ] stack = [ class java/io/PrintStream, int ] frame_type = 81 /* same_locals_1_stack_item */ stack = [ class java/io/PrintStream ] frame_type = 255 /* full_frame */ offset_delta = 0 locals = [ class "[Ljava/lang/String;", class java/lang/String, class java/lang/String, class java/lang/String ] stack = [ class java/io/PrintStream, int ]}SourceFile: "TestApp.java"

///是我加的注释。可以参考:《》

JVM指令可以自行搜索。

 

关键就是这句:s1 == s3.intern()

s1就是常量池的地址 也就是#2
而s3.intern()直接去找#2
#2==#2
所以是true!
比较s2 == s1.intern()   6:和#2显然不等   6:就是栈上的地址 自然和 常量池地址#2不等啊

总结这样就行: 1.8下  

1. new字符串是会进常量池      

2.相等的字符串常量池自然相等  

3.常量池和栈地址自然不等   

2.String字符串拼接JVM自动优化为StringBuilder

说明:jdk1.8下,老版本不会转

public static void main( String[] args )    {        User u=new User();        u.setUserID("FX123");        u.setUserName("张三");        u.setUserAge(32);        String aa="";        aa+="Hello World!"+u.getUserID()+u.getUserName()+u.getUserAge();        System.out.println(aa);    }

所以在jdk1.8下完全没必要自行拼接StringBuilder,编译器生成字节码的时候已经做了优化。

---------------

需要注意的是:   

由于构建最终字符串的子字符串在编译时已经已知了,在这种情况下Java编译器才会进行如上的优化。这种优化称为a static string concatenation optimization,自JDK5时就开始启用。

那是否就能说明在JDK5以后,我们不再需要手动生成StringBuilder,通过+号也能达到同样的性能?

我们尝试下动态拼接字符串:

动态拼接字符串指的是仅在运行时才知道最终字符串的子字符串。比如在循环中增加字符串:

public static void main(String[] args) {        String result = "";        for (int i = 0; i < 10; i++) {            result += "some more data";        }        System.out.println(result);    }

下面是jdk12的字节码: 注意 InvokeDynamic 

// class version 56.0 (56)// access flags 0x21public class linuxstyle/blog/csdn/net/StringTest {  // compiled from: StringTest.java  // access flags 0x19  public final static INNERCLASS java/lang/invoke/MethodHandles$Lookup java/lang/invoke/MethodHandles Lookup  // access flags 0x1  public 
()V L0 LINENUMBER 3 L0 ALOAD 0 INVOKESPECIAL java/lang/Object.
()V RETURN L1 LOCALVARIABLE this Llinuxstyle/blog/csdn/net/StringTest; L0 L1 0 MAXSTACK = 1 MAXLOCALS = 1 // access flags 0x9 public static main([Ljava/lang/String;)V L0 LINENUMBER 5 L0 LDC "" ASTORE 1 L1 LINENUMBER 6 L1 ICONST_0 ISTORE 2 L2 FRAME APPEND [java/lang/String I] ILOAD 2 BIPUSH 10 IF_ICMPGE L3 L4 LINENUMBER 7 L4 ALOAD 1 INVOKEDYNAMIC makeConcatWithConstants(Ljava/lang/String;)Ljava/lang/String; [ // handle kind 0x6 : INVOKESTATIC java/lang/invoke/StringConcatFactory.makeConcatWithConstants(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/invoke/CallSite; // arguments: "\u0001some more data" ] ASTORE 1 L5 LINENUMBER 6 L5 IINC 2 1 GOTO L2 L3 LINENUMBER 9 L3 FRAME CHOP 1 GETSTATIC java/lang/System.out : Ljava/io/PrintStream; ALOAD 1 INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V L6 LINENUMBER 10 L6 RETURN L7 LOCALVARIABLE i I L2 L3 2 LOCALVARIABLE args [Ljava/lang/String; L0 L7 0 LOCALVARIABLE result Ljava/lang/String; L1 L7 1 MAXSTACK = 2 MAXLOCALS = 3}

具体原因以及有人写了很详细了:

InvokeDynamic

可以看到JDK9之后生成的字节码是比较简洁的,只有一个 InvokeDynamic 指令,编译器会给该类字节码增加 invokedynamic 指令相关内容,包括方法句柄、引导方法、调用点、方法类型等等。它会调用 java.lang.invoke.StringConcatFactory 类中的makeConcatWithConstants方法,它有六种策略来处理字符串。如下代码所示,有默认的策略,也可以通过java.lang.invoke.stringConcat启动参数来修改策略。
有六种策略,前五种还是用StringBuilder实现,而默认的策略MH_INLINE_SIZED_EXACT,这种策略下是直接使用字节数组来操作,并且字节数组长度预先计算好,可以减少字符串复制操作。实现的核心是通过 MethodHandle 来实现 runtime,具体实现逻辑在MethodHandleInlineCopyStrategy.generate方法中。
 

 

3.多线程并发synchronized原理和局部变量和全局变量i++字节码的差异

这里2个问题:

1.多线程并发i++需要加锁,否则会有并发问题

2.i++作为局部变量其实是一步操作没有分2步,因为局部变量不存在所谓的并发问题!

代码

public class SynchronizedTest {  public static void main(String[] args) throws InterruptedException {    for (int i = 0; i < 100; i++) {      new Thread(              () -> {                try {                  for (int j = 0; j < 1000; j++) {                    MyCount.addcount();                  }                } catch (Exception e) {                  e.printStackTrace();                }              })          .start();    }    sleep(10000);    System.out.println("count:" + MyCount.getCount());  }}
public class MyCount {    private static int count;    public   static void addcount(){        int k=0;        synchronized(MyCount.class){            k++;        count++;        }    }    public static Integer getCount() {        return count;    }}

这里故意写一个局部变量k,他的字节码是iinc 0 by 1

synchronized的实现是靠monitorenter和monitorexit实现

参考:

 

4.多线程并发AtomicInteger原理

import java.util.concurrent.atomic.AtomicInteger;public class MyCount {    private static int count;    public static AtomicInteger value = new AtomicInteger();    public   static void addcount(){        value.incrementAndGet();    }    public static Integer getCount() {        return count;    }}

字节码非常简洁。看java源码

/**     * Atomically increments by one the current value.     *     * @return the updated value     */    public final int incrementAndGet() {        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;    }
public final int getAndAddInt(Object var1, long var2, int var4) {        int var5;        do {            var5 = this.getIntVolatile(var1, var2);        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));        return var5;    }
public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

CAS通过调用JNI的代码实现的。JNI:Native Interface为JAVA本地调用,允许java调用其他语言。

而compareAndSwapInt就是借助C来调用CPU底层指令实现的。下面从分析比较常用的CPU(intel x86)来解释CAS的实现原理。可以看到这是个本地方法调用。这个本地方法在openjdk中依次调用的c++代码为:unsafe.cpp,atomic.cpp和atomicwindowsx86.inline.hpp。

这个本地方法的最终实现在openjdk的如下位置:

openjdk\hotspot\src\oscpu\windowsx86\vm\ atomicwindowsx86.inline.hpp(对应于windows,X86处理器)。下面是对应于intel x86处理器的源代码的片段:

inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {  // alternative for InterlockedCompareExchange  int mp = os::is_MP();//判断是否是多处理器  __asm {    mov edx, dest    mov ecx, exchange_value    mov eax, compare_value    LOCK_IF_MP(mp)    cmpxchg dword ptr [edx], ecx  }}// Adding a lock prefix to an instruction on MP machine// VC++ doesn't like the lock prefix to be on a single line// so we can't insert a label after the lock prefix.// By emitting a lock prefix, we can define a label after it.#define LOCK_IF_MP(mp) __asm cmp mp, 0  \                       __asm je L0      \                       __asm _emit 0xF0 \                       __asm L0:}

LOCK_IF_MP根据当前系统是否为多核处理器决定是否为cmpxchg指令添加lock前缀。

  1. 如果是多处理器,为cmpxchg指令添加lock前缀。
  2. 反之,就省略lock前缀。(单处理器会不需要lock前缀提供的内存屏障效果)

intel手册对lock前缀的说明如下:

  1. 确保后续指令执行的原子性。
    在Pentium及之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其它处理器暂时无法通过总线访问内存,很显然,这个开销很大。在新的处理器中,Intel使用缓存锁定来保证指令执行的原子性,缓存锁定将大大降低lock前缀指令的执行开销。
  2. 禁止该指令与前面和后面的读写指令重排序。
  3. 把写缓冲区的所有数据刷新到内存中。

上面的第2点和第3点所具有的内存屏障效果,保证了CAS同时具有volatile读和volatile写的内存语义。

CAS缺点

CAS存在一个很明显的问题,即ABA问题

问题:如果变量V初次读取的时候是A,并且在准备赋值的时候检查到它仍然是A,那能说明它的值没有被其他线程修改过了吗?

如果在这段期间曾经被改成B,然后又改回A,那CAS操作就会误认为它从来没有被修改过。针对这种情况,java并发包中提供了一个带有标记的原子引用类AtomicStampedReference,它可以通过控制变量值的版本来保证CAS的正确性。

参考:

参考:

 

5.BTrace实现原理的初步分析

Btrace基于动态字节码修改技术(Hotswap)来实现运行时java程序的跟踪和替换。

Btrace的脚本是用纯java编写的,基于一套官方提供的annotation,使跟踪逻辑实现起来异常简单。

BTrace就是使用了java attach api附加agent.jar,然后使用脚本解析引擎+asm来重写指定类的字节码,再使用instrument实现对原有类的替换。借鉴这些,我们也完全可以实现自己的动态追踪工具。

总体来说,BTrace是基于动态字节码修改技术(Hotswap)来实现运行时java程序的跟踪和替换。大体的原理可以用下面的公式描述:

Client(Java compile api + attach api) + Agent(脚本解析引擎 + ASM + JDK6 Instumentation) + Socket

参考《》本文是源码分析

BTrace的入口类在:

https://github.com/btraceio/btrace/blob/master/src/share/classes/com/sun/btrace/client/Main.java

在其main方法中,可以看到起最终的核心逻辑是在:

https://github.com/btraceio/btrace/blob/master/src/share/classes/com/sun/btrace/client/Client.java

/**     * Attach the BTrace client to the given Java process.     * Loads BTrace agent on the target process if not loaded     * already.     */    public void attach(String pid, String sysCp, String bootCp) throws IOException {        try {            String agentPath = "/btrace-agent.jar";            String tmp = Client.class.getClassLoader().getResource("com/sun/btrace").toString();            tmp = tmp.substring(0, tmp.indexOf('!'));            tmp = tmp.substring("jar:".length(), tmp.lastIndexOf('/'));            agentPath = tmp + agentPath;            agentPath = new File(new URI(agentPath)).getAbsolutePath();            attach(pid, agentPath, sysCp, bootCp);        } catch (RuntimeException re) {            throw re;        } catch (IOException ioexp) {            throw ioexp;        } catch (Exception exp) {            throw new IOException(exp.getMessage());        }    }    /**     * Attach the BTrace client to the given Java process.     * Loads BTrace agent on the target process if not loaded     * already. Accepts the full path of the btrace agent jar.     * Also, accepts system classpath and boot classpath optionally.     */    public void attach(String pid, String agentPath, String sysCp, String bootCp) throws IOException {        try {            VirtualMachine vm = null;            if (debug) {                debugPrint("attaching to " + pid);            }            vm = VirtualMachine.attach(pid);            if (debug) {                debugPrint("checking port availability: " + port);            }            Properties serverVmProps = vm.getSystemProperties();            int serverPort = Integer.parseInt(serverVmProps.getProperty("btrace.port", "-1"));            if (serverPort != -1) {                if (serverPort != port) {                    throw new IOException("Can not attach to PID " + pid + " on port " + port + ". There is already a BTrace server active on port " + serverPort + "!");                }            } else {                if (!isPortAvailable(port)) {                    throw new IOException("Port " + port + " unavailable.");                }            }            if (debug) {                debugPrint("attached to " + pid);            }            if (debug) {                debugPrint("loading " + agentPath);            }            String agentArgs = "port=" + port;            if (statsdDef != null) {                agentArgs += ",statsd=" + statsdDef;            }            if (debug) {                agentArgs += ",debug=true";            }            if (trusted) {                agentArgs += ",trusted=true";            }            if (dumpClasses) {                agentArgs += ",dumpClasses=true";                agentArgs += ",dumpDir=" + dumpDir;            }            if (trackRetransforms) {                agentArgs += ",trackRetransforms=true";            }            if (bootCp != null) {                agentArgs += ",bootClassPath=" + bootCp;            }            String toolsPath = getToolsJarPath(                serverVmProps.getProperty("java.class.path"),                serverVmProps.getProperty("java.home")            );            if (sysCp == null) {                sysCp = toolsPath;            } else {                sysCp = sysCp + File.pathSeparator + toolsPath;            }            agentArgs += ",systemClassPath=" + sysCp;            String cmdQueueLimit = System.getProperty(BTraceRuntime.CMD_QUEUE_LIMIT_KEY, null);            if (cmdQueueLimit != null) {                agentArgs += ",cmdQueueLimit=" + cmdQueueLimit;            }            agentArgs += ",probeDescPath=" + probeDescPath;            if (debug) {                debugPrint("agent args: " + agentArgs);            }            vm.loadAgent(agentPath, agentArgs);            if (debug) {                debugPrint("loaded " + agentPath);            }        } catch (RuntimeException re) {            throw re;        } catch (IOException ioexp) {            throw ioexp;        } catch (Exception exp) {            throw new IOException(exp.getMessage());        }    }

---------------------

参考《》本文是架构分析

实现原理

用一个简单的公式来表述(从左往右的使用顺序):
Sun Attach API + BTrace脚本解析引擎 + Objectweb ASM + JDK6 Instumentation

1,Sun Attach API是充当动态加载 agent 的角色。

2,BTrace解析引擎解析BTrace脚本。

3,解析完脚本后,Btrace会使用ASM将脚本里标注的类java.lang.Thread的字节码重写,植入跟踪代码或新的逻辑。

在上面那个例子中,Java.lang.Thread 这个类的字节码被重写了。并在start方法体尾部植入了 func 方法的调用。

4,利用instrumentation的retransformClasses,将原始字节码替换掉。

替换后的字节码是在新线程内才会生效的,老线程依旧用老的字节码在执行。

替换的类原有的字段值是保持不变的。

局限性

BTrace的神通仅仅局限于只读操作。不仅强制要求java脚本需要提供public static方法.而且,脚本里无法实例化对象,数组,不能抛异常或捕捉,不能有循环,内部类等等。针对一些特殊对象,BTrace也是无能为力的。比如java.lang.Integer,Array等。

不过话说回来,BTrace应付大部分应用场景还是绰绰有余的。

打破局限性约束

1,自己做instrumentation的类替换,绕过BTrace的安全检查。
2,基于JVM TI自己写工具,上面的局限性将荡然无存,并且可以实现的功能会多很多。

----

《》

JVM Attach API ,JVM的 Attach有两种方式: 

1. 指定javaagent参数 (premain方法) 
2. 运行时动态attach(agentmain方法)

进行jstack的时候,经常看到两个线程Signal Dispatcher和 Attach Listener线程,这两个线程是实现attach的关键所在,其中前者是在jvm启动的时候就会创建的,后者只有接收过attach请求的时候vm才会创建,,Signal Dispatcher是分发信号的, Attach Listener 是处理attach请求的,那么两者有什么关系呢,当我们执行attach方法的时候,会向目标vm发出一个SIGQUIT 的信号,目标vm收到这个信号之后就会创建Attach Listener线程了. 

Attach机制说得简单点就是提供A进程可以连上B进程(当然是java进程),创建socket进行通信,A通过发命令给B,B然后对命令进行截取从自己的vm中获取信息发回给客户端vm. 
Instrumentation的实现其实主要使用了load这个指令,它用来实现让target vm动态加载agentlib,Instrumentation的实现在一个名为libinstrument.dylib的动态lib库,linux下是libinstrument.so,它是基于jvmti接口实现的,因此在对其进行load的时候会创建一个agent实例….

具体调试方法:《》

----------------------------

新增为什么main函数起的线程不能调用局部变量

代码:

package com.company;public class Main {    static int vvvvvvvvvvv=0;    public static void main(String args[]){//主方法        int iiiiiiiiiiiiii=0;        System.out.println(">>>>>>>>>>1111111111111");        new Thread(() -> {            System.out.println(">>>>>>>>>>22222222222222");            vvvvvvvvvvv++;            System.out.println(vvvvvvvvvvv);            System.out.println(">>>>>>>>>>3333333333");        }).start();        System.out.println(">>>>>>>>>>444444444444");        new Thread() {            public void run() {                vvvvvvvvvvv++;                vvvvvvvvvvv++;                System.out.println(vvvvvvvvvvv);                System.out.println(">>>>>>>>>>5555555555555");            }        }.start();        System.out.println(">>>>>>>>>>666666666666666");    }}

 

注意要点中线程代码块才可以看到字节码,不能在线程代码块之外! 

 完整字节码:

// class version 52.0 (52)// access flags 0x21public class com/company/Main {  // compiled from: Main.java  // access flags 0x8  static INNERCLASS com/company/Main$1 null null  // access flags 0x19  public final static INNERCLASS java/lang/invoke/MethodHandles$Lookup java/lang/invoke/MethodHandles Lookup  // access flags 0x8  static I vvvvvvvvvvv  // access flags 0x1  public 
()V L0 LINENUMBER 3 L0 ALOAD 0 INVOKESPECIAL java/lang/Object.
()V RETURN L1 LOCALVARIABLE this Lcom/company/Main; L0 L1 0 MAXSTACK = 1 MAXLOCALS = 1 // access flags 0x9 public static main([Ljava/lang/String;)V L0 LINENUMBER 7 L0 ICONST_0 ISTORE 1 L1 LINENUMBER 8 L1 GETSTATIC java/lang/System.out : Ljava/io/PrintStream; LDC ">>>>>>>>>>1111111111111" INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V L2 LINENUMBER 9 L2 NEW java/lang/Thread DUP INVOKEDYNAMIC run()Ljava/lang/Runnable; [ // handle kind 0x6 : INVOKESTATIC java/lang/invoke/LambdaMetafactory.metafactory(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite; // arguments: ()V, // handle kind 0x6 : INVOKESTATIC com/company/Main.lambda$main$0()V, ()V ] INVOKESPECIAL java/lang/Thread.
(Ljava/lang/Runnable;)V L3 LINENUMBER 14 L3 INVOKEVIRTUAL java/lang/Thread.start ()V L4 LINENUMBER 15 L4 GETSTATIC java/lang/System.out : Ljava/io/PrintStream; LDC ">>>>>>>>>>444444444444" INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V L5 LINENUMBER 16 L5 NEW com/company/Main$1 DUP INVOKESPECIAL com/company/Main$1.
()V L6 LINENUMBER 23 L6 INVOKEVIRTUAL com/company/Main$1.start ()V L7 LINENUMBER 24 L7 GETSTATIC java/lang/System.out : Ljava/io/PrintStream; LDC ">>>>>>>>>>666666666666666" INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V L8 LINENUMBER 25 L8 RETURN L9 LOCALVARIABLE args [Ljava/lang/String; L0 L9 0 LOCALVARIABLE iiiiiiiiiiiiii I L1 L9 1 MAXSTACK = 3 MAXLOCALS = 2 // access flags 0x100A private static synthetic lambda$main$0()V L0 LINENUMBER 10 L0 GETSTATIC java/lang/System.out : Ljava/io/PrintStream; LDC ">>>>>>>>>>22222222222222" INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V L1 LINENUMBER 11 L1 GETSTATIC com/company/Main.vvvvvvvvvvv : I ICONST_1 IADD PUTSTATIC com/company/Main.vvvvvvvvvvv : I L2 LINENUMBER 12 L2 GETSTATIC java/lang/System.out : Ljava/io/PrintStream; GETSTATIC com/company/Main.vvvvvvvvvvv : I INVOKEVIRTUAL java/io/PrintStream.println (I)V L3 LINENUMBER 13 L3 GETSTATIC java/lang/System.out : Ljava/io/PrintStream; LDC ">>>>>>>>>>3333333333" INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V L4 LINENUMBER 14 L4 RETURN MAXSTACK = 2 MAXLOCALS = 0 // access flags 0x8 static
()V L0 LINENUMBER 5 L0 ICONST_0 PUTSTATIC com/company/Main.vvvvvvvvvvv : I RETURN MAXSTACK = 1 MAXLOCALS = 0}
0 getstatic #2 
3 iconst_1 4 iadd 5 putstatic #2
8 getstatic #2
11 iconst_112 iadd13 putstatic #2
16 getstatic #3
19 getstatic #2
22 invokevirtual #4
25 getstatic #3
28 ldc #5 <>>>>>>>>>>5555555555555>30 invokevirtual #6
33 return

 

转载地址:https://linuxstyle.blog.csdn.net/article/details/88195459 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:IDEA实用插件和技巧
下一篇:异步编程原理以及Java实现

发表评论

最新留言

很好
[***.229.124.182]2024年04月06日 09时47分35秒